Comparison of the recommendations of the AAPM TG‐51 and TG‐51 addendum reference dosimetry protocols

نویسندگان

  • Travis J. McCaw
  • Min‐Sig Hwang
  • Si Young Jang
  • M. Saiful Huq
چکیده

This work quantified differences between recommendations of the TG-51 and TG-51 addendum reference dosimetry protocols. Reference dosimetry was performed for flattened photon beams with nominal energies of 6, 10, 15, and 23 MV, as well as flattening-filter free (FFF) beam energies of 6 and 10 MV, following the recommendations of both the TG-51 and TG-51 addendum protocols using both a Farmer® ionization chamber and a scanning ionization chamber with calibration coefficients traceable to absorbed dose-to-water (Dw ) standards. Differences in Dw determined by the two protocols were 0.1%-0.3% for beam energies with a flattening filter, and up to 0.2% and 0.8% for FFF beams measured with the scanning and Farmer® ionization chambers, respectively, due to kQ determination, volume-averaging correction, and collimator jaw setting. Combined uncertainty was between 0.91% and 1.2% (k = 1), varying by protocol and detector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of AAPM Addendum to TG‐51, IAEA TRS‐398, and JSMP 12: Calibration of photon beams in water

The American Association of Physicists in Medicine (AAPM) Working Group on TG-51 published an Addendum to the AAPM's TG-51 protocol (Addendum to TG-51) in 2014, and the Japan Society of Medical Physics (JSMP) published a new dosimetry protocol JSMP 12 in 2012. In this study, we compared the absorbed dose to water determined at the reference depth for high-energy photon beams following the recom...

متن کامل

A Comparison of dosimetric parameters between IAEA TRS-398, AAPM TG-51 protocols and Monte-Carlo simulation

Background: Two protocols of AAPM TG-51 and IAEA TRS-398 were compared followed by a measurement and Monte Carlo simulation of beam quality correction factor, KQ, AAPM TG-51 and IAEA TRS-398 protocols were compared for the absorbed dose to water for DW, and KQ parameters. Materials and Methods: Dose measurements by either protocols were performed with cylindrical and plane parallel ch...

متن کامل

Comparison of IPSM 1990 photon dosimetry code of practice with IAEA TRS‐398 and AAPM TG‐51.

Several codes of practice for photon dosimetry are currently used around the world, supported by different organizations. A comparison of IPSM 1990 with both IAEA TRS-398 and AAPM TG-51 has been performed. All three protocols are based on the calibration of ionization chambers in terms of standards of absorbed dose to water, as it is the case with other modern codes of practice. This comparison...

متن کامل

Addendum to the AAPM's TG-51 Protocol for Clinical Reference Dosimetry of High-Energy Photon Beams.

An addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water in megavoltage photon beams is presented. This addendum continues the procedure laid out in TG-51 but new kQ data for photon beams, based on Monte Carlo simulations, are presented and recommendations are given to improve the accuracy and consistency of the protocol's implementation. The components of the un...

متن کامل

Air Kerma Based Dosimetry versus Absorbed Dose to Water Based Dosimetry for High-energy Photon

Introduction: In the last 5 years the American Association of Physicists in Medicine Task Group 51 (AAPM TG-51) and the International Atomic Energy Agency (IAEA) published a new high-energy photon and electron dosimetry protocol. These protocols are based on the use of an ion chamber having an absorbed-dose to water calibration factor. These are different from the previous NCS report-2 and IAEA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017